Year 1/2-Division	Solve 1-step problems using division (sharing) Divide 2-digits by 1-digit (sharing with no exchange)
Concrete	Pictorial ${ }^{\text {abstract }}$
$\begin{aligned} & 00000 \\ & 00000 \\ & 00000 \\ & 00000 \\ & \ddots 0 \because \because \ddots \\ & \bullet 0 \end{aligned}$	
Key skills and concepts	When solving 1-step problems using division (sharing): - Children solve problems by sharing amounts into equal groups - In Year 1 use concrete \& pictorial representations to solve problems. Children are not expected to record division formally. - In Year 2 children are introduced to the division symbol

Year 1/2-Division	Solve 1-step problems using division (grouping)
Concrete	Pictorial Abstract
	80 80
Key skills and concepts	When solving 1-step problems using division (grouping): - Children solve problems by grouping \& counting the number of groups - Grouping encourages counting in multiples and links to repeated subtraction - Use concrete representations in fixed groups to show the link between multiplication \& division.

Year 3/4-Division	Divide 2-digits by 1-digit (sharing with exchange)
Concrete	Pictorial ${ }^{\text {abstract }}$
$52 \div 4=13 \quad \begin{aligned} & \text { The calculation is shown } \\ & \text { alongside the use of concrete } \\ & \text { resources } \end{aligned}$	$52 \div 4=13$
Key skills and concepts	When dividing 2-digits by 1-digit (sharing with exchange): - Use place value counters or Base 10 to exchange one ten for ten ones when dividing numbers involving an exchange - Start with the equipment outside the place value grid before sharing the tens and ones equally between the rows - Flexible partitioning in a part-whole model supports this method

Year 3/4-Division	Divide 2-digits by 1-digit (sharing with remainders)
Concrete	Pictorial Abstract
800 0000008 00 000000 tom 000 0 000 0 000 0 000 $53 \div 4=13 r 1$ The calculation is shown alongside the use of concrete resources	
Key skills and concepts	When dividing 2-digits by 1-digit (sharing with remainders): - Use place value counters or Base 10 to exchange one ten for ten ones when dividing numbers involving an exchange - Starting with the equipment outside the place value grid will highlight the remainders as they will be left outside the grid once the equal groups have been made - Flexible partitioning in a part-whole model supports this method

Year 5 - Division	Divide 2-digits by 1-digit (grouping)
Concrete	Pictorial Abstract
	Alongside the use of concrete resources images and drawings of these resources are used. $52 \div 4=13$
Key skills and concepts	When dividing 2-digits by 1-digit (grouping): - When using the short division method, use grouping. Starting with the largest place value, group by the divisor - Language is important. Children consider 'How many groups of 4 tens can we make?' and 'How many groups of 4 ones can we make?' - Remainders can be seen clearly as they are left ungrouped

Year 4 - Division	Divide 3-digits by 1-digit (sharing)
Concrete	Pictorial Abstract
	Flexible partitioning
Key skills and concepts	When dividing 3-digits by 1-digit (sharing) - Place value counters can be used to share 3-digit numbers into groups - Start with the equipment outside the place value grid before sharing the hundreds, tens and ones equally between the rows. This will also help highlight remainders - Flexible partitioning in a part-whole model supports this method

Year 5 - Division	Divide 4-digits by 1-digit (grouping)
Concrete	Pictorial Abstract
	Alongside the use of concrete resources images and drawings of these resources are used.
Key skills and concepts	When dividing 4-digits by 1-digit (grouping): - Place value counters and plain counters can be used on a place value grid to support understanding - Children can draw their own counters \& group them through a more pictorial approach - Encourage children to move away from the concrete \& pictorial when dividing numbers with multiple exchanges

Year 6 - Division	Divide multi-digits by 2-digits (long division)
Concrete	Pictorial Abstract
Key skills and concepts	When dividing multi-digits by 2-digits (long division): - Written methods are the most accurate \& efficient as concrete and pictorial representations become less effective - Children can also divide by 2-digit numbers using long division - Children can write out multiples to support calculations with larger remainders - Children can solve problems with remainders where the quotient can be rounded as appropriate

Year 6 - Division	Divide multi-digits by 2-digits (long division with remainders)
Concrete	Pictorial Abstract
	$372 \div 15=24 \mathrm{r} 12$ $372 \div 15=24 \frac{4}{5}$
Key skills and concepts	When dividing multi-digits by 2-digits (long division with remainders): - Written methods are the most accurate \& efficient as concrete and pictorial representations become less effective - When a remainder is left at the end of the calculation, either leave it as a remainder or convert it to a fraction. This will depend on the context of the question - Questions can be answered where the quotient needs to be rounded according to the context.

